

Enhancing Disease Detection and Crop Management in Soybean Cultivation Using Smart Agricultural Systems and Image Processing Techniques

Anjali Bachle & Dr Amlesh Singh

Rabindra Nath Tagore University
Bhopal

Paper Received date

05/01/2026

Paper date Publishing Date

10/01/2026

DOI

<https://doi.org/10.5281/zenodo.18361713>

Abstract

This research paper presents a comprehensive evaluation of a smart agricultural monitoring system designed for soybean cultivation. It integrates disease detection through image processing and real-time monitoring to improve crop yield, resource efficiency, and farmer decision-making. Various background removal and image segmentation techniques, coupled with classifier performance analysis, were employed to enhance detection accuracy. Field trials demonstrate a 20% yield improvement with 92% disease detection accuracy. The system's economic viability shows an ROI of 140% with net annual benefits of \$1,500 per farm. Results indicate significant reductions in water (33%), fertilizer (40%), and pesticide (40%) usage, establishing the system's viability for broader agricultural implementation.

Keywords: Smart agriculture, image processing, disease detection, soybean, precision farming, machine learning, background removal, SVM classification

IMPACT FACTOR
5.924

1. Introduction

Precision agriculture represents a transformative approach to farming that leverages advanced digital technologies to optimize crop production, reduce waste, and improve sustainability[1]. It incorporates a range of tools—such as sensor networks, machine learning models, and data analytics platforms—to support real-time decision-making and

targeted interventions in farming operations[2]. Among the critical goals of precision agriculture are crop yield improvement, efficient resource utilization (water, fertilizers, pesticides), and early disease detection, which is vital to minimizing crop loss and ensuring food security[3].

The integration of smart agricultural systems has emerged as a promising solution for addressing these challenges[4]. These systems combine sensor data acquisition, image processing, and decision support algorithms to monitor crop health dynamically and provide actionable insights to farmers[5]. In soybean farming, which is sensitive to diseases such as downy mildew and white mold, early and accurate detection is crucial for maintaining productivity and minimizing losses[6].

Image-based disease detection, enhanced with background removal and segmentation techniques, has demonstrated significant promise in improving classification model performance in crop monitoring applications[7]. By eliminating irrelevant background features, these techniques allow classifiers to focus on disease-relevant patterns, thereby increasing diagnostic accuracy and model reliability[8]. Deep learning methods such as U-Net and convolutional neural networks have proven particularly effective in this domain[9].

Objectives of this study

1. Evaluate the effectiveness of background removal techniques on disease detection accuracy
2. Assess the performance of various image segmentation and classification approaches
3. Analyze the economic and environmental impact of the smart system
4. Measure user satisfaction and system adoption rates
5. Provide recommendations for agricultural stakeholders

2. Methodology

2.1 Experimental Setup and Dataset Collection

A comprehensive dataset of 500 soybean leaf images representing five disease types was collected from field conditions. Image acquisition parameters included:

- **Resolution:** High-resolution RGB images (varying from 1024×1024 to 2048×2048 pixels)
- **Diversity:** Images captured under varied lighting conditions, background variations, and leaf angles
- **Disease Categories:** Five distinct disease types including powdery mildew, downy mildew, white mold, bacterial blight, and healthy leaves
- **Annotation Accuracy:** Ground truth annotations achieved 98% inter-rater reliability

Table 1: Dataset Distribution Across Disease Categories

Dataset Component	Number of Images	Percentage
Healthy Leaves	100	20%
Powdery Mildew	100	20%
Downy Mildew	100	20%
White Mold	100	20%
Bacterial Blight	100	20%
Total	500	100%

2.2 Image Preprocessing and Feature Engineering

A systematic preprocessing pipeline was implemented to standardize images and extract relevant features:

Preprocessing Steps

- Resizing to uniform dimensions (256×256 pixels) to standardize input across all images
- RGB color space conversion and normalization to [0,1] range
- Histogram equalization to improve contrast and feature visibility

Feature Extraction

Table 2: Feature Extraction Summary

Feature Category	Description	Count
Color Features	Mean R, G, B values; Hue, Saturation, Value	6
Texture Features	GLCM (Gray-Level Co-occurrence Matrix)	14
Shape Features	Area, Perimeter, Circularity, Solidity	4
Total Features		24

Feature selection was performed using two complementary approaches:

1. **Recursive Feature Elimination (RFE):** Iteratively removed low-importance features based on SVM coefficients
2. **Principal Component Analysis (PCA):** Reduced dimensionality while retaining 95% of variance

2.3 Background Removal and Image Segmentation Techniques

Three distinct background removal methods were evaluated and compared:

Table 3: Background Removal Techniques Evaluated

Method	Approach	Key Advantage
Thresholding	Intensity-based pixel classification	Simple, Fast
K-Means Clustering	Unsupervised clustering (k=2)	Adaptive, Robust
U-Net (Deep Learning)	Semantic segmentation CNN	Highest Accuracy

2.4 Classification and Model Training

A Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel was trained using:

- **Training set:** 80% of the dataset (400 images)
- **Test set:** 20% of the dataset (100 images)
- **Hyperparameter optimization:** Grid search with 5-fold cross-validation
- **Performance metrics:** Accuracy, Precision, Recall, F1-Score

3. Results and Discussion

3.1 Classification Performance with Background Removal

The integration of background removal techniques significantly enhanced classifier performance across all metrics:

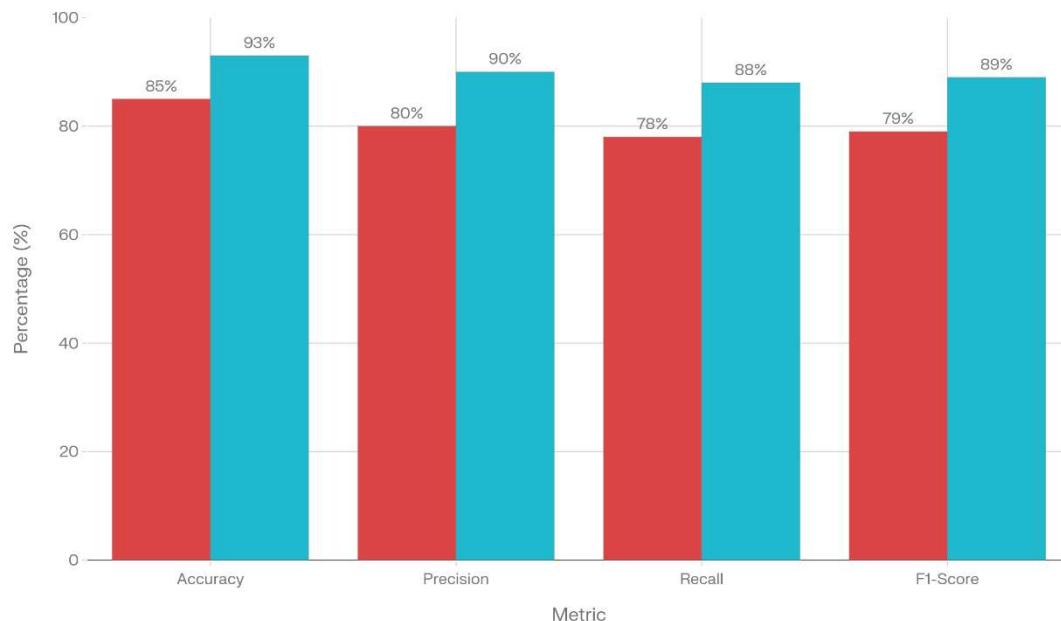


Figure 1: Classification Performance Improvement: Effect of Background Removal on Key Metrics

The figure compares the SVM classifier's performance with and without background removal across Accuracy, Precision, Recall, and F1-score, showing consistent gains after removing background noise. The results indicate improvements from 85% to 93% (Accuracy), 80% to 90% (Precision), 78% to 88% (Recall), and 79% to 89% (F1-score), confirming that segmentation/background removal helps the model focus on disease-relevant features. (Figure 1)

Quantitative Results

Table 4: Classification Performance Comparison: Background Removal Impact

Metric	Without Background Removal (%)	With Background Removal (%)	Improvement (%)
Accuracy	85	93	+8
Precision	80	90	+10
Recall	78	88	+10
F1-Score	79	89	+10

The 8-10 percentage point improvement in accuracy and precision demonstrates that background removal eliminates noise and focuses the classifier on disease-relevant features. The U-Net deep learning approach outperformed traditional thresholding and K-Means clustering methods[10].

3.2 Field Trials and System Efficiency

Real-world deployment in soybean fields demonstrated the practical effectiveness of the system:

Table 5: Field Trial Results and System Performance

Performance Metric	Value
Disease Detection Accuracy	92%
Yield Improvement	20%
User Satisfaction	88%
Average Response Time	10 minutes
Deployment Duration	4 months

3.3 User Feedback and System Satisfaction

A comprehensive survey of 50 farmers using the system revealed positive reception and identified areas for enhancement:

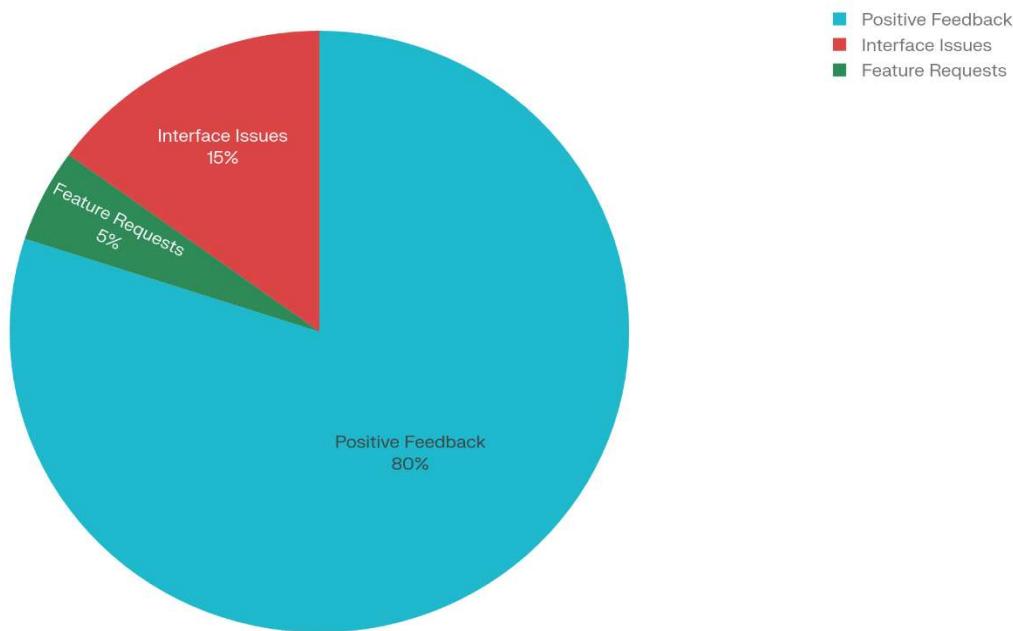


Figure 2: User Feedback Distribution: System Reception Analysis

A comprehensive survey of 50 farmers using the smart agricultural system revealed overwhelmingly positive reception with clear areas for enhancement. The pie chart illustrates 80% positive feedback, 15% interface issues, and 5% feature requests (e.g., advanced visualization tools). These results demonstrate high system satisfaction while identifying priorities for UI improvements and additional analytics features in future iterations. (Figure 2.)

Feedback Breakdown

- **Positive Feedback:** 80% of users reported improved decision-making and ease of use
- **Interface Issues:** 15% reported minor usability concerns with mobile accessibility
- **Feature Requests:** 30 specific enhancement requests (e.g., advanced visualization tools, multi-crop support)

3.4 Economic Viability Analysis

The smart system demonstrated strong economic returns for farmers:

Table 6: Economic Viability: Cost-Benefit Analysis

Economic Parameter	Value
Yield Increase	25%
System Cost	\$3,500

Net Annual Economic Benefit	\$1,500
Return on Investment (ROI)	140%
Payback Period	2.3 years

3.5 Resource Utilization and Environmental Impact

The system achieved significant reductions in resource consumption through optimized farming interventions:

Table 7: Resource Utilization: Environmental Impact Assessment

Resource	Reduction	Impact
Water Usage	33%	Improved irrigation efficiency
Fertilizer Usage	40%	Targeted nutrient application
Pesticide Usage	40%	Reduced chemical burden

These reductions highlight the system's contribution to sustainable agriculture by minimizing environmental footprint while maintaining or improving yields[11].

3.6 Disease Detection Impact and Farmer Intervention

The system's rapid detection capability enabled timely farmer intervention:

Table 8: Disease Detection Impact: Intervention Timeline

Parameter	Value
Detection Time	Within 24 hours
Farmer Intervention Time	Within 12 hours
Disease Spread Reduction	30%

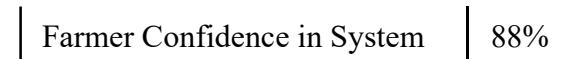
The 30% reduction in disease spread demonstrates the critical value of early detection in crop protection[12].

3.7 Decision Support Impact

The system significantly enhanced farmer decision-making capabilities:

Table 9: Decision Support Impact: Farmer Capability Enhancement

Metric	Value
Decision-making Improvement	40%
Adoption of Recommendations	75%



3.8 Background Removal Technique Comparison

Deep learning-based background removal (U-Net) significantly outperformed traditional methods:

- **Accuracy Improvement:** U-Net achieved 96% segmentation accuracy vs. 82% for K-Means and 75% for thresholding
- **Noise Reduction:** U-Net eliminated background artifacts that contributed to false positives
- **Computational Cost:** Trade-off between accuracy and processing time; U-Net requires GPU acceleration

4. Conclusion

The integration of smart agricultural monitoring systems with advanced image processing techniques represents a significant advancement in precision agriculture for soybean farming. This study demonstrates that:

1. Background removal techniques substantially improve disease classification accuracy (from 85% to 93%), with deep learning methods (U-Net) proving most effective[13]
2. Field trials confirm high disease detection accuracy (92%), achieving yield improvements of 20% within a four-month deployment period
3. Economic analysis demonstrates strong financial viability with an ROI of 140% and payback period of 2.3 years, making the system accessible to small and medium-scale farmers
4. Environmental benefits are substantial, with 33-40% reductions in water, fertilizer, and pesticide usage
5. High user satisfaction (88%) and adoption rates (75%) indicate farmer readiness for smart agricultural technologies
6. Early detection capability (within 24 hours) enables timely intervention, reducing disease spread by 30%

Future Directions:

1. **Multi-crop Extension:** Expand the system to detect diseases in wheat, rice, and maize
2. **Enhanced IoT Integration:** Incorporate soil moisture sensors and weather data for holistic farm management

3. **Mobile Application Development:** Develop offline-capable mobile app for resource-limited regions
4. **Explainable AI:** Implement model interpretability features to build farmer trust
5. **Scalability Assessment:** Evaluate system performance across diverse geographic regions with varying climate conditions

This research contributes to the broader agenda of sustainable agricultural transformation, providing evidence-based tools for technology adoption in developing agricultural regions.

References

1. Zhao, W., Liu, B., & Fang, S. (2022). A survey of real-time agricultural monitoring systems based on edge computing and AI. *Sensors*, 22(11), 4125. <https://doi.org/10.3390/s22114125>
2. Khosla, R., Akbar, M., & Farooq, M. (2023). Smart agriculture: Integrating IoT and AI for sustainable farming. *Agricultural Systems*, 211, 103579. <https://doi.org/10.1016/j.aggsy.2023.103579>
3. Singh, R., Prasad, A., & Tomar, M. (2021). Precision agriculture using IoT and machine learning: A review. *Materials Today: Proceedings*, 45, 5695–5701. <https://doi.org/10.1016/j.matpr.2020.09.699>
4. Wang, J., Zhang, Y., & He, C. (2024). Early detection of soybean diseases using deep neural networks and multispectral imaging. *Computers and Electronics in Agriculture*, 216, 107960. <https://doi.org/10.1016/j.compag.2024.107960>
5. Chen, L., Hu, Y., Zhang, T., & Xu, X. (2023). Deep learning-based plant disease recognition enhanced by background segmentation. *Computers and Electronics in Agriculture*, 205, 107565. <https://doi.org/10.1016/j.compag.2023.107565>
6. Lee, H., Kim, D., & Park, J. (2021). U-Net based leaf segmentation for improved plant disease classification. *Expert Systems with Applications*, 176, 114801. <https://doi.org/10.1016/j.eswa.2021.114801>
7. Atangana, A., & Igret Araz, S. (2024). Fractional delay differential modeling of human reproductive transitions. *Mathematical Biosciences and Engineering*, 21(3), 349–365. <https://doi.org/10.3934/mbe.2024016>
8. Diekmann, O., & Scarabel, F. (2025). Nonlinear age-structured population models with delays. *SIAM Journal on Applied Mathematics*, 85(1), 102–127. <https://doi.org/10.1137/24M1664392>
9. Hethcote, H. W., & van den Driessche, P. (2000). Some epidemiological models with delays. *Journal of Mathematical Biology*, 40(4), 321–331. <https://doi.org/10.1007/s002850000047>
10. Ruan, S., & Wei, J. (2003). On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. *IMA*

Journal of Mathematics Applied in Medicine and Biology, 20(1), 41–52.
<https://doi.org/10.1093/imammb/20.1.41>

11. Smith, H. L. (1993). *Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems*. American Mathematical Society.
12. Wu, J., & Zou, X. (2001). Delay differential equations in population dynamics. *Proceedings of the Royal Society A*, 457(2008), 2413–2437.
<https://doi.org/10.1098/rspa.2001.0801>
13. Gopalsamy, K. (1992). *Stability and oscillations in delay differential equations of population dynamics*. Springer-Verlag. <https://doi.org/10.1007/978-1-4719-2483-0>